Lecture 1 - Basic Set Notation

Thursday, January 23, 2020 9:40 AM

Probability							,	
	1	1			/			
	2	3	4	15	(0	7/	8	9/19
1118	1)		/))]	/ 11		11 /) /	11 / 1
(1/1)	(/		, , , ('	1 /	// //		11/1
	1			1		,	•	

Defn: Set

A set is a collection of objects/things.

$$N = \{1, 2, 3, 4, 5, \dots\} = natral/counting$$

$$Q = \left\{ \frac{m}{h} \text{ when } m, n \text{ are in } \mathbb{N} \right\}$$

(Kind rational numbers)

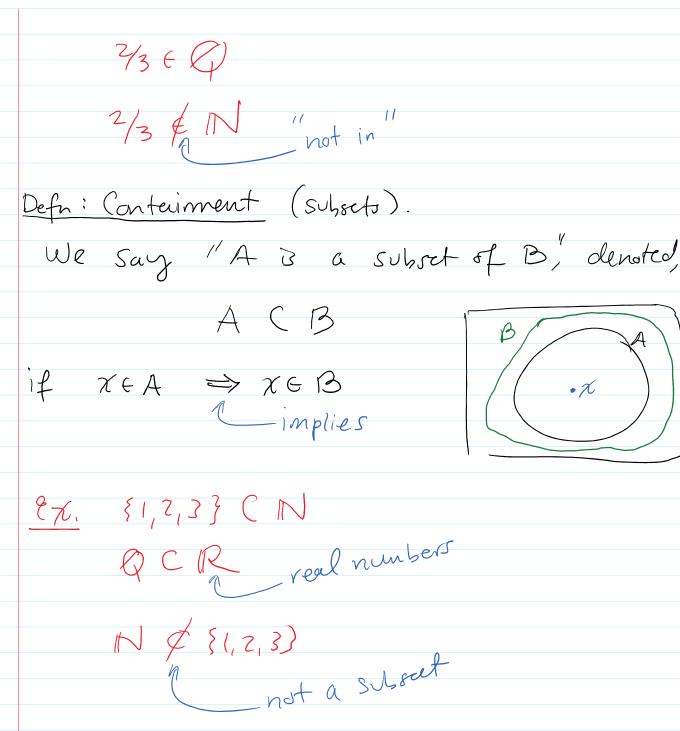
Defn: Set Membership

We say "x is in S", denote,

xeS

if S centuin X as one of its elements.

Ex. 5 & IN here!



Defn: Set Egrality

We say "A is equal to B" if

A CB and BCA

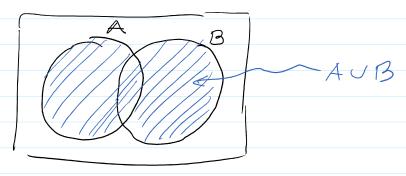
We write A = B.

Set Operations

Defn: Union

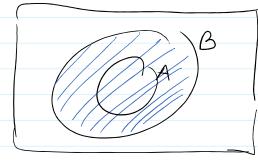
the union of A and B denoted A UB, is defred as

 $A \cup B = \{ \chi \mid \chi \in A \text{ or } \chi \in B \}$



 $Ex. A = \{1, 2, 3, 4, 5, \dots\}$ $B = \{-1, -2, -3, -4, \dots\}$ $A \cup B = \{\pm 1, \pm 2, \pm 3, \dots\}$ $Ex. Q \cup N = Q$ b/c $N \subset Q$

Fact! If ACB then AUB=B



Ex. NUN = N Fact: AUA = A (Idempotency)

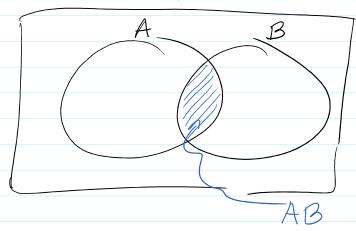
Defn: Intersection

We say the intersection of A and B denoted

ANB or AB

is defined as

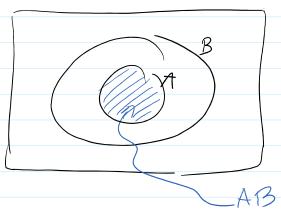
AnB = AB = {x | x \in A and x \in B}



 $Ex: A = \{1, 2, 3, 4, \dots\}$ $B = \{-1, -2, -3, \dots\}$ then $AB = \emptyset$

Ex. QN = N

Fact: If A C B then AB = A



Fact: AA = A.

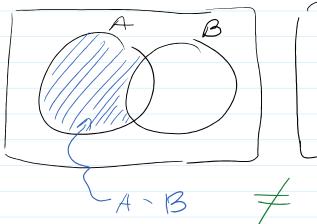
Defn: Set Difference

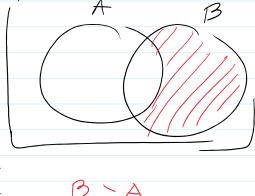
The "difference" between A and B, denoted,

AB

is defined as

 $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$





 $\frac{9}{2}$, $A = \{1, 2, 3\}$ $B = \{3, 4, 5\}$ Then $A \setminus B = \{1, 2\}$ $B \setminus A = \{4, 5\}$

Defn: Complements

Need: Some "universe" S in which ar sets live.

then, the complement of A denoted A; is defined as

 $A = \{ x | x \notin A \}$ $= \{ x \in S \mid x \in A \}$

ex, A = \$5,63, S= M note A (S

then A = {1,2,3,4,7,8,---}

Consider: $S = \{0, \pm 1, \pm 2, \pm 3, \dots \}$

then $A^{c} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, -5, -6, \pm 7, \dots \}$

best defn is

 $A^c = S \setminus A$.

Theorems about Set Operations

2) Associativity:
$$AU(BUC) = (AUB)UC = AUBUC$$

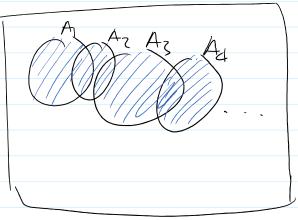
 $A(BC) = (AB)C = ABC$

Cantably Infinite Set Operations

Let A, Az, Az, Az, Az, --- of sets where Ai C S fer (=1, 2, 3 ...

Defin: The union of {Ai}in denoted

/x is in at loast one Ai



Ex. let S = (0,1) < (1/1/1/11)

and let $A_i = [/i, 1]$ for i=1, 2, 3, ...

\$13 = A, < [0]

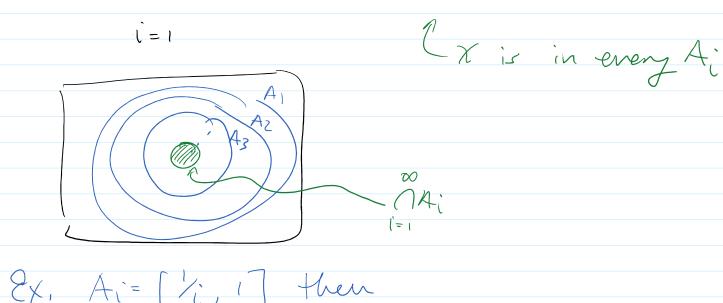
Ai

includes! $A_2 = \begin{bmatrix} 1/2 \\ 1/4 \end{bmatrix}$ $A_3 = \begin{bmatrix} 1/2 \\ 1/4 \end{bmatrix}$

Defu: Infinite Intersection

The intersection \$A; 3;=, is defined as

 $\bigcap_{A_i} = \left\{ x \in S \mid x \in A_i \text{ for all } i \right\}$



$$ext{2}$$
, $fi = [xi, i]$ then
$$fi = [xi, i]$$

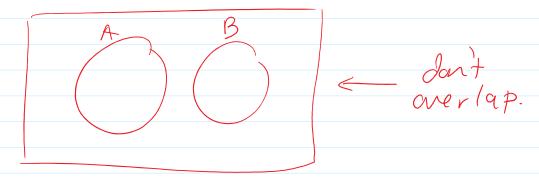
$$fi = [xi]$$

$$fi = [xi]$$

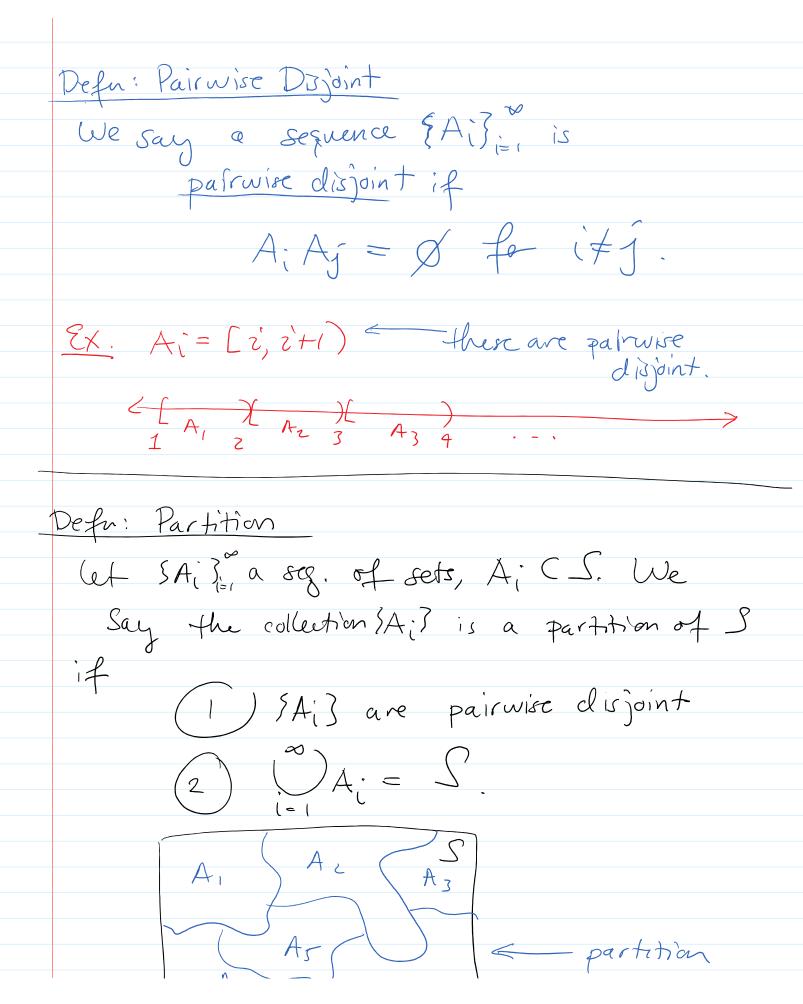
$$fi = [xi]$$

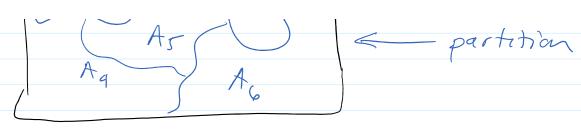
Defu! Disjoint
We say A, B < S are disjoint if $AB = \emptyset.$

They share no common elements.



 $\frac{Ex}{B = 51,2,3}$) dujoint b/c $AB = \emptyset$. B = 54,5,63





Ex.
$$A_i = [i, i+1) \ ([1, \infty) = S]$$

there $\{A_i\}$ partition $[1, \infty)$.

Defn: Power Set

The power set is the set of all subsets. For a set A,

2 A = P(A) def { B | B C A}

<u>ex.</u> A = S1, 23.

2 = P(A) = { {13, {27, }1,23, 0}

notice: |7A| = 2|A|

| . (= Size of = # elements