Lecture 12 - Convergence

Tuesday, October 15, 2024 10:59 AM
 $\sum_{\text{true,old}} P_{\text{true}}$... We say (Xn)n=1 converges almost swely $\chi_{n}(1) \rightarrow \chi(1)$ Vs EACS where $P(A) = 1$. Denote this as $\mathbb{X}_n \stackrel{a.s.}{\rightarrow} \mathbb{X}$. $\mathcal{E} \mathsf{x}.$ $S = [0, 1]$ w/ uniform density. $Let X₀(a) = a+a^b$ $\chi(A) = \mathcal{A}$ Does $X_n \stackrel{a.s.}{\rightarrow} X$? For which A does Xn (2) \rightarrow X(d) ? If $\mathcal{A} \in [0,1)$ then $as n \rightarrow \infty$ $X_n(A) = A+A$ $\neg \Delta = \chi(\Delta),$

 $\mathcal{K}_n(\mathcal{A}) = \mathcal{A} + \mathcal{A} \rightarrow \mathcal{A} = \mathcal{K}(\mathcal{A}),$ $\lim_{n\to\infty} \chi_n(\phi) = \chi(\phi)$. If $a=1$ then $X_n(4) = 1 + 1^n = 2 \neq 1 = X(4)$. $S_0 A = [0, 1]$ and $P([0, 1]) = 1$ s_{6} $\times n \rightarrow \times$. Defu: Convergence In Probability We say (X_n) converges in prob. to X denoted $X_n \rightarrow X$ $1f$ $\forall e>0$ $\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1$. Kn is less than 2
away from X eguiv. $\frac{\partial u}{\partial x}$
 $\forall \epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0.$

Pick 870, Cak. $P(|X|-\chi|<\epsilon), P(|X,-\chi|<\epsilon),...$ $\frac{1}{\sqrt{1-x}} = -\frac{1}{x^{x-x}} = x^{x}$ Defu: Convergnnce In Distribution We say (X_n) converges in dirt to X (denoted Xn des X)
if the CDFs converge (as functions - ptuse) $i.$ ℓ . $F_{h} \stackrel{phase}{\sim} F_{core}$ OPF of Xn $i.e.$ $F_{n}(x) \stackrel{n}{\rightarrow} F(x)$ $\forall x$.

Theorem: $a.s. \Rightarrow p \Rightarrow d$ Converses are typically fulse. $\frac{c_{p}}{c}$ let $\chi_{\tilde{l}} \stackrel{iid}{\sim} U(a, l).$ and let $Y_n = \max_{i=1,\dots,n} X_i$. Intuition: x x x Yn creeps up towards 1. as n->x $Y_n \rightarrow \frac{1}{2}$ deservate RV w/ $i.e.$

PMF Show that $\gamma_n \rightarrow 1$. $\frac{V}{ln}$ 1 Need to show: VETO $P(|\overline{X}_n - \overline{X}| \geq \epsilon) \rightarrow 0$ $P(1y_n-1) \geq e)$ $= P(|1 - \frac{1}{n}| \gg \epsilon)$ $= P(1 - \frac{1}{n} \ge \epsilon)$ b/c $\gamma_n \le 1$ $= P(\gamma_n \leq 1-\epsilon)$ $= P(X, 1-\epsilon, X_2 = 1-\epsilon, ..., X_n = 1-\epsilon)$ γ_c $\gamma_n = \frac{max}{i=l...n}X_i$ $= P(X, 51 - 2) \cdot P(X, 51 - 5) \cdots P(X, 51 - 5)$

 $= \bigcup (\chi, \epsilon \cup \epsilon) \cdot \bigcup (\chi, \epsilon \cup \epsilon) \cdots \bigcup (\chi, \epsilon \cup \epsilon)$ by Indep. of x_i $= P(X_i \le 1-\epsilon)^{h}$ b/c X; have same
dist $U(0,1)$ $1f$ $2f$ $1f$ $1 - 2f$ then $P(X;=1-\epsilon)=0$ $1f$ $0 < E \le 1$ then $1/\bar{p}$ $P(X_i \leq 1-\epsilon)^n$
= $(1-\epsilon)^n$
= $(1-\epsilon)^n$ all together,
 $P(|Y_n-1|\geqslant \epsilon)=\begin{cases}0,&\text{if }n=1\\ (-\epsilon)^n,&\text{if }n\geqslant 1\end{cases}$ all together, $as \neg \neg \neg \neg \neg$ $5>1$ \int_{0}^{1}

 $\rightarrow = \left\{ \begin{array}{ccccc} 0 & , & \varepsilon > 1 \\ & , & \\ 0 & , & 0 < \varepsilon \leq 1 \end{array} \right.$ S_0 γ_n \rightarrow 1. Let's show that $\gamma_n \stackrel{d}{\rightarrow} 1$. Need to show: $F_n(y) \rightarrow F(y)$ $\forall y$
Corof y_n CDF of 1 $\begin{array}{c|c} & 1 & & \text{c} \\ \hline 1 & & & \text{d} \end{array}$ Let's get CDF of Y_n .

 $F_n(y) = P(Y_n \le y)$ = $P(\max_{i=1,...,n} X_i \leq y)$ = $P(X, 2y, Xz=1, ..., Xn=y)$ $P(X, \leq y) P(X, \leq y) \cdots P(X, \leq y)$ $\overline{}$ $P(X; \leq y)$ \equiv $X_i \stackrel{iid}{\sim} U(0,1)$ so $\frac{d}{d}$ $\overline{}$ $\begin{cases} y_n^m & 0 \leq y \leq \\ 1, & y \geq 1 \end{cases}$ $P(X_i \le y)^n$ $\overline{1}$ \mathbf{I} \leq $\mathcal G$

 $= 25 - 421$ $\Gamma_n(y)$ 6, y<1
1, y = 1 (y) = $F_n(y) \xrightarrow{p} \begin{cases} 0 & ,y < 0 \\ 0 & ,0 \le y < 1 \\ 1 & ,y \ge 1 \end{cases}$ $=$ $F(y)$ s_0 $\sqrt{n} \stackrel{d}{\rightarrow} 1$. $x, x: \stackrel{\text{iid}}{\sim} u(a, 1)$ $Y_n = \lim_{t \in I_{n}} x^{n}$ $Z_n = n (1 - Y_n)$ $Ut's shw flut Zn \stackrel{d}{\rightarrow} Z.$

Calc. $F_{n}(3) = P(2_{n} \le 3)$ = $P(n(l-\gamma_n)\leq \gamma)$ = $P(Y_n \ge 1 - \frac{3}{n})$ $=1-P(\gamma_{n}<1-\frac{3}{n})$ = $1 - P(X_1 < -3X_1) \cdots P(X_n < -3X_n)$ $=1-P(X-c1-3/n)^n$ $=\sqrt{1-0,1-2n}<0$ $(1-(1-3/2)^n)0 \le 1-3/2 \le 1$ $F_n(g) = 1 - \left(\frac{1 - \frac{c}{2}}{n}\right)^n \int_{1/m}^{1/m} (1 + \frac{1}{n})^n = e$
as $n \to \infty$

 $n32 (1 + \frac{1}{n}) - C$ $as n\rightarrow\infty$ d $F_{h}(3) \rightarrow 1-e^{-3}$ = $F(3)$ for 320 $= CDF of Exp(1)$ \mathcal{S}_0 , $\mathcal{Z}_h \stackrel{d}{\longrightarrow} \text{Exp}(1)$.