Suggested Problems 1

- (1) Let $X_n \stackrel{iid}{\sim} Bernoulli(p)$. What is the PMF of $G = \left(\prod_{i=n}^N X_n\right)^{\frac{1}{n}}$?
- (2) Let $X_1 \sim Bin(10, 1/8)$ and $X_2 \sim Bin(4, 1/8)$ and $X_3 \sim Bin(6, 1/8)$ be mutually independent. Find a formula for $P(\bar{X} < 1.8)$.
- (3) Let X_1 and X_2 be i.i.d from U(0,1). Find $P(\bar{X} > 0.8)$.
- (4) Let X_1, X_2, X_3 be i.i.d from Bernoulli(p). Find the PMF of \overline{X} .
- (5) Let X_1 and X_2 have joint density

$$f(x_1, x_2) = 2$$
 for $0 < x_1 < x_2 < 1$.

- Find the PDF of \overline{X} . (6) Let $X_n \stackrel{iid}{\sim} U(0,1)$. Show that $X_{(1)} \sim Beta(1,N)$. (7) Let $X_n \stackrel{iid}{\sim} U(0,1)$. Show that $X_{(N)} \sim Beta(N,1)$.
- (8) Let $X_n \stackrel{iid}{\sim} Exp(\lambda)$. Show that $X_{(1)} \sim Exp(N\lambda)$.
- (9) Let $X_n \stackrel{iid}{\sim} Exp(\lambda)$. Show that $\bar{X} \sim Gamma(N, N\lambda)$. (10) Let $X_n \stackrel{iid}{\sim} Poisson(\lambda)$. What is the MGF of \bar{X} ?