Suggested Problems 11

- (1) If L(x) and U(x) satisfy $P(L \le \theta) = 1 \alpha_1$ and $P(U \ge \theta) = 1 \alpha_2$ and L < U show that $P(L < \theta < U) = 1 \alpha_1 \alpha_2$.
- (2) Let $X_n \stackrel{iid}{\sim} F$ where

$$F(x) = \begin{cases} 0 & x < 0\\ (x/\beta)^5 & 0 < x < \beta\\ 1 & x \ge \beta \end{cases}$$

then $T = X_{(N)}$ has the CDF $F_T(t) = (t/\beta)^{5N}$. Use T to construct a one-sided 95% confidence interval for β of the form $(-\infty, U)$.

(3) Let X_n have a shifted exponential distribution so that

$$F(x) = 1 - \exp(-(x - \mu))$$
 for $x > \mu$

Then if $T = X_{(1)}$ we have

$$F_T(t) = 1 - \exp(-N(x - \mu))$$
 for $t > \mu$.

Use T to construct a $(1 - \alpha)$ confidence interval for μ .

- (4) Given $X_n \stackrel{iid}{\sim} Bern(p)$ derive the form of a (1α) confidence interval for p by inverting the LRT test $H_0: p = p_0 \vee H_a: p \neq p_0$.
- (5) Let $X_n \stackrel{iid}{\sim} f_{\mu}$ where $f_{\mu}(x) = g(x \mu)$ for some function g not involving μ . Show that $\overline{X} - \mu$ is pivotal for μ .
- (6) Let $X_n \stackrel{iid}{\sim} f_{\sigma}$ where $f_{\sigma}(x) = \frac{1}{\sigma}g(x/\sigma)$ for some function g not involving σ . Show that \bar{X}/σ is pivotal for σ .
- (7) Let $X_n \stackrel{iid}{\sim} N(\theta, \theta)$. Argue that $(\bar{X} \theta)/\sqrt{\theta}$ is a pivot for θ and use it to find the form of a (1α) CI for θ .
- (8) Let $X \sim Beta(\theta, 1)$ and let $Y = -1/\log(X)$. Evaluate the confidence coefficient for the CI [y/2, y]. Hint: $f(y) = \theta/y^2 \exp(-\theta/y)$ for y > 0.
- (9) Let $X \sim Beta(\theta, 1)$. Notice that $Y = X^{\theta} \sim U(0, 1)$. Use Y to construct the form of a (1α) CI for θ .
- (10) Let $X \sim U(\theta 1/2, \theta + 1/2)$. Find a (1α) CI for θ based on X.