Suggested Problems 4

(1) Let $X_n \stackrel{iid}{\sim} f_{\theta}$ where

$$f_{\theta}(x) = \begin{cases} \theta & x = -1\\ 2\theta & x = 0\\ 1 - 3\theta & x = 1. \end{cases}$$

Is the MOM estimator of θ unbiased?

(2) Let $X_n \stackrel{iid}{\sim} f_{\theta}$ where

$$f_{\theta}(x) = \theta(x - 1/2) + 1$$
 for $0 < x < 1$.

Is the MOM estimator of θ unbiased?

- (3) Let $X_n \stackrel{iid}{\sim} Exp(\lambda)$. Find a constant k so that $kX_{(1)}$ is unbiased for $1/\lambda$. (4) Let X_1 and X_2 be a i.i.d. random sample from a distribution with mean μ and variance σ^2 . Consider $\hat{\mu}_1 = \bar{X}$ and $\hat{\mu}_2 = (2X_1 + X_2)/3$. Which estimator do we prefer?
- (5) Let X_1, \ldots, X_N be i.i.d from $N(\mu_X, \theta)$ and Y_1, \ldots, Y_M be i.i.d from $N(\mu_Y, \theta)$ and the Xs and Ys are independent.
 - (a) Find the MLEs for μ_x, μ_y and θ .
 - (b) Is $\hat{\theta}$ unbiased for θ ?
- (6) Let $X_n \stackrel{iid}{\sim} f_{\lambda}$ where

$$f_{\lambda}(x) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left(-\lambda(x-\mu)^2/(2\mu^2 x)\right)$$

Find a the MLEs for μ and λ .

(7) Let $X_n \stackrel{iid}{\sim} f_{\theta}$ where

$$f_{\theta}(x) = \frac{\theta x^{\theta-1}}{2^{\theta}}$$
 for $0 < x < 2$.

- Find the MLE for θ . (8) Let $X_n \stackrel{iid}{\sim} U(-\theta, \theta)$. Find the MLE for θ . (9) Let $X_n \stackrel{iid}{\sim} U(0, \theta)$.
- - (a) Find the MLE for the variance of a $U(0, \theta)$.
 - (b) What is the variance of the MLE for θ ?
- (10) Let $X_n \stackrel{iid}{\sim} f_{\theta}$ where

$$f_{\theta}(x) = \exp(-(x-\theta))$$
 for $x \ge \theta$.

What is the MLE for θ ?