Suggested Problems 8

- (1) Let $X_i \stackrel{iid}{\sim} Exponential(\lambda)$. Show that $Y_n = \min_{i=1,\dots,n} X_i \stackrel{p}{\to} 0$. (2) Let X_n be independent with mean μ and variance $\sigma^2 < \infty$. Show that (2) Let $X_n = \frac{1}{N} \sum_{n=1}^N X_n$ is consistent for μ . (3) Let $X_n = X + Y_n$ where $\mathbb{E}[Y_n] = 1/n$ and $Var(Y_n) = \sigma^2/n$. Show that

- $X_n \xrightarrow{p} X.$ (4) Let $X_n \xrightarrow{iid} Exp(n)$ so that $\mathbb{E}[X_n] = 1/n$. Show that $X_n \xrightarrow{p} 0.$ (5) Let the CDF of X_n be $F_{X_n}(x) = (1 (1 \frac{1}{n})^{nx})\mathbb{1}(x > 0)$. Show that $X_n \xrightarrow{d} Exp(1).$
- (6) Let the sample space be $S = \{H, T\}$ be equally likely outcomes of flipping a coin. Define

$$X_n(s) = \begin{cases} \frac{n}{n+1} & s = H\\ (-1)^n & s = T \end{cases}$$

- Does $X_n \xrightarrow{a.s.}{\rightarrow} 1$? (7) Let $X_n U(0, \theta)$ and $X_{(N)} = \max_{i=1,...,N} X_i$. Show that $X_{(N)} \xrightarrow{p} \theta$.
- (8) Let $Y_N \sim Bin(N,p)$. Show that $Y_N/N \xrightarrow{p} p$.
- (9) If X_n is a seq. of random variables with MGFs $M_{X_n}(t)$ then if

$$M_{X_n}(t) \xrightarrow{n} M(t)$$

we have that $X_n \xrightarrow{d} X$ where X is a r.v. with MGF M(t).

Let
$$M_{X_n}(t) = \left(\frac{\lambda}{\lambda - t}\right)^n$$
. What does X_n/n converge to in distribution?

(10) Let $X_n \xrightarrow{p} X$ for some r.v. X and $Y_n \xrightarrow{p} 5$ and $a_n \xrightarrow{n} 7$. What does $a_n Y_n e^{X_n}$ converge to in probability?