Lecture 9 -- Logistic Regression
Thursday, September 26, 2024 3:42 PM
Logistic Regression
 $\frac{2\mathcal{U}}{4} = a r f u$ Model yl & directly Basic version: binary classifier y e {0,1} Prediction for: $Y \in \{0,1\}$ Sma $p(y=1|x)=1-p(y=0|x)$ C only need to model one $\hat{f}(\underline{x}) = |\Leftrightarrow p(y=1|\underline{x}) \models p(y=0|\underline{x})$ $>$ l-p(y=11X) \Leftrightarrow p(y=11x)> 1/2. $Y|X = x \sim Bern \frac{???}{p(y=1|x) = g(x)}$

 $-\frac{g(x)}{g(x)}$
- $g(x)$ χ In particular logistic regression uses $g(x) = logistic (x^T_{\beta})$ $logi\delta hc(\chi) = \frac{1}{1+e^{i\chi}}$ inverse: $logit(a) = log(9/(1-a))$

Notice: $\delta_1(\chi) = p(y=1|\chi) = g(\chi) = log_1 3 + i c(\chi)$ then $logit(\delta_{1}(x)) = x^{T}\beta$ So logistic regression is a linear Han do I learn good values of β ? MLE $\hat{\beta}$ = argmax $l(\beta)$ = argmin NLL(β) $\frac{g_{n}|\chi_{n}\sim\text{Bern}(g(\chi_{n}))}{g(\chi_{n})=logistic(\chi_{n}^{T}s)}$ $Z \sim Bern(p)$, $p(t) = p^{t}(1-p)^{1-t}$ $p = p(z=1)$ \overline{V} . \overline{V}

 $L(\beta) = \prod_{n} \frac{y_{n}}{p(y_{n}|\chi_{n})}$ $=\pi g(x_n)^{dn}(1-g(x_n))$ 1- In $l(\beta) = \sum_{n} [y_{n} log(f_{1}(x_{n})) + (1-y_{n}) log(1 - g_{1}(x_{n}))]$ $=-\sum_{n}\frac{H(y_{n},g(x_{n}))}{Crossempty}$ $H(p, g) = plog(g) + (1-p)log(1-g)$ $NLL(\beta) = \sum_{n} [H(y_n, g(x_n))]$ Cross entrapy $\hat{\beta} = argmin$ = minimize cross entropy

No closed form soln, vse numerial optim. Gradient descent: Intialize gress $\hat{\beta}^{(0)}$
For $t=1,2,3,...$ $\hat{\beta}^{(t)} \leftarrow \hat{\beta}^{(t-1)} \propto \overline{V_{\beta}} N L L(\hat{\beta}^{(t-1)})$ Can extend to more than 1 elass Called Multinomial Logistic Perrosion LDA v. Logistic Regression Logistic Regression LDA Model YIX directly
no assurp. about dist of X (1) model XIY and Y normality assump. 2 harder to fit,
Could have problems if 2 easter to fit, less

