REPRODUCIBLE PROGRAMMING

EVERYDAY PRACTICES FOR REPRODUCIBLE
PROGRAMMING

e Theory: follow a comprehensive set of coding guidelines.
e Practice: time-pressure, rapid prototyping, etc. competes with code
quality and reproducibility.
e |n this module, we cover five idioms that can help enhance reproducibility
everyday:
1. write it in code, not the console
2. don’t repeat yourself, use functions
3. avoid magic numbers, expose them
4, cache intermediate results
5. seed random numbers

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

Code written in the console is wiped upon restart, and not particularly
reproducible.

Console 1 X

knn mod = knnreg(y~x,data=df, k = 10)
df$preds = predict(knn mod)

save preds for later use
write.csv(x=df,file="preds.csv")

For example, | may save model predictions in “preds.csv” but | don’t exactly
know how they were produced.

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

Shared analyses should have a instruction list.

Scripts and notebooks are ideal for this:

| knn_model.ipynb X
B + XTO 0 » m C » Code v

00
knn _mod = knnreg(y~x,data=df, k = 10)
df$preds = predict(knn mod)

save preds for later use
write.csv(x=df,file="preds.csv")

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

A less reproducible process:

commands

IN console

plots and
) ' report/use
output results

copy/paste/edit

After closing down the console, | don’t have a reproducible record of what |
did to get results.

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

A more reproducible process:

data proc.

script run

plots and
report/use
output 9 results

Afterwards, | have a more reproducible script that shows exactly what was
run to get results.

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

This applies to all stages of analysis, including low-level processing of data
before more traditional statistical analyses.

Example, aligning RNA-seq data:

samtools sort -@ 8 -o UHR Repl.bam UHR Repl.sam

samtools sort -@ 8 -o UHR Rep2.bam UHR Rep2.sam

cd $RNA HOME/alignments/hisat?2

java -Xmx2g -jar $PICARD MergeSamFiles -OUTPUT
UHR.bam -INPUT UHR Repl.bam -INPUT UHR Rep2.bam -INPUT

UHR Rep3.bam

$> 1ls -1 *.bam | wc -1

$> hisat2 --very-sensitive --no-spliced-alignment -x
grch38 -U SRR1806626.fastq.gz > SRR1806626.fastq.sam

should be wrapped-up in a script:

$> bash process rnaseq.sh

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

Ina 1inux environment makefiles can be helpful for unifying and self-
documenting this process. For a wonderful tutorial see: Karl Broman’s
minimal make.

makefilesareawayof combining multiple commands specifying the
target and the dependencies.

https://kbroman.org/minimal_make/
https://kbroman.org/minimal_make/

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

Run with the command make and pass in a named argument

1 .PHONY: clean all

2

3 raw.csv: raw _analysis.R

4 Rscript raw analysis.R

5

6 proc.csv: raw.csv proc analysis.R
7 Rscript proc analysis.R

8

9 plot.pdf: proc.csv plotting.R
10 Rscript plotting.R

11

12 hist.pdf: proc.csv plot hist.R
13 Rscript plot hist.R

[
N

1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.

Run with the command make and pass in a named argument

15 all:

16 make hist.pdf

17 make plot.pdf

18

19 clean:

20 rm raw.csv || true
21 rm proc.csv true
22 rm plot.pdf true
23 rm hist.pdf true

2. DON’T REPEAT YOURSELF (DRY), USE
FUNCTIONS.

Copying / pasting can create code that is difficult to maintain / understand.

For example, we often see code like this:

knn modl0 = knnreg(y~x,data=df, k = 10)

knn mod5 = knnreg(y~x,data=df, k = 5)

knn modl = knnreg(y~x,data=df, k = 1)

2. DON’T REPEAT YOURSELF, USE FUNCTIONS.

Refactoring as a function is a much more scalable solution:

fit knn = function(K) {
knn mod = knnreg(y~x,data=df, k = K)
return(knn mod)

K seq = c(10,5,1)

knn mods = lapply(K seq,fit knn)

2. DON’T REPEAT YOURSELF, USE FUNCTIONS.

Advantages of DRY:

1. makes your code easier to change / maintain (avoiding errors)
2. makes your code easier to understand
3. removes some clutter from code

2. DON’T REPEAT YOURSELF, USE FUNCTIONS.

Can over-do it:

e Firsttime, write it.

e Second time, copy it.

e Third* time, refactor it.

e *May not actually be the third time.

2. DON’T REPEAT YOURSELF, USE FUNCTIONS.

“Premature optimization is the root of all evil.” - Don Knuth

fit model = function(df, fit fn, ...){
mdl = fit fn(y~x,data=df,...)
return(mdl)

mod lm = fit model(df, Lm)
mod knn = fit model (df,knnreg,K=5)

In this particular case, factoring out the call to 1m and knnreg increased the
number of lines of code and made it harder to read.

3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

An R example:

run_sim=function(){
X = sort(runif(200,-4*pi,4*pli)) # simulated data
eps = rnorm(200,0, .25)
y = sin(x)+eps

smoothed = locPolSmootherC(x=x,y=y,xeval=x,deg=0,
kernel=gaussK, bw=.5)

preds = smoothed$betal

return(preds)

}

run_sim()

3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Magic numbers: sample size, kernel type, bandwidth, ...

run_sim=function() {
X = sort(runif(200,-4*pi,4*pi)) # simulated data
eps = rnorm(200,0, .25)
y = sin(x)+eps

smoothed = locPolSmootherC(x=x,y=y, xeval=x,deg=0,
kernel=gaussK, bw=.5)

preds = smoothed$betal
return(preds)

}

run_sim()

3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Better: expose those magic numbers as parameters

run_sim=function(N=200,sig=.25,bandw=.5, kern=gaussK) {
X = sort(runif(N, -4*pi,4*pi)) # simulated data
eps = rnorm(N,0,sig)
y = sin(x)+eps

smoothed = locPolSmootherC(x=x,y=y,xeval=x,deg=0,
kernel=kern, bw=bandw)

preds = smoothed$betal

return(preds)

}

run_sim()

run_sim(bandw=1,sig=2)

3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Naming magic numbers and other parameter choices

1. makes the code easier to read and more self-documenting
2. enhances reproducibility by
e flagging these analysis choices,
e exposing them via an interface for easy (third party) experimentation

4. CACHE INTERMEDIATE RESULTS

Ideally, reproducible analysis takes data from (e.g.)

® raw sources, to
e cleaned-up processed data, to
o final results/plots/output

If this is all one long script that processes data without saving any
intermediate results along the way, it can be difficult to reproduce the
analysis.

4, CACHE INTERMEDIATE RESULTS

It is good practice to cache intermediate results to enhance reproducibility
by creating multiple entry-points into the analysis.

Don’t structure analysis like this:

-

Structure it like this:

entry p0|nt

entry pomt

entry pomt entry pomt

4. CACHE INTERMEDIATE RESULTS

A very simplified version in R uses the idioms saveRDS (object, file)
and object = readRDS (file):

raw _data = read.csv('raw data.csv')
... do some analysis to produce "basic data

saveRDS (object=basic data,file='basic data cache.rds"')

basic data = readRDS(file='basic data cache.rds')
.. do some analysis to produce intermed data

saveRDS (object=intermed data,file='intermed data cache.rds')

intermed data = readRDS(file='intermed data cache.rds')
#...

4. CACHE INTERMEDIATE RESULTS

A useful idiom if | have a single function’s results | want to cache:

read or run = function(cache file, func){
if(!file.exists(cache file)){

cat("Running func...");flush.console()
obj = func()
saveRDS(object=0bj,file=cache file)
} else {
cat("Reading from cache...");flush.console()

obj = readRDS(file=cache file)
}

return(obj)

4, CACHE INTERMEDIATE RESULTS

An example of this idiom:

proc df = read or run('proc cache.rds',proc data)

Running func...

proc df = read or run('proc cache.rds',proc data)

Reading from cache...

5. SEED RANDOM NUMBERS

For statistical analyses, our results often depend on randomness. To make
randomness reproducible we need to identically set the pseudo-random
number generators (PRNG) state each time.

In R we can do this with set . seed (number) or set.seed (NULL)

Example: a simple MC estimate of the mean of a U(0,1)

X = runif(10)
mean(x”~2)

0.504305202849137

X = runif(10)
mean(x”~2)

0.432056724361968

5. SEED RANDOM NUMBERS

For statistical analyses, our results often depend on randomness. To make
randomness reproducible we need to identically set the pseudo-random
number generators (PRNG) state each time.

In R we can do this with set . seed (number) or set.seed (NULL)

Example: a simple MC estimate of the mean of a U(0,1)

set.seed(887561)
X = runif(10)
mean(x~2)

0.261476556288769

set.seed(887561)
X = runif(10)
mean(x~2)

0.261476556288769

5. SEED RANDOM NUMBERS

In R the PRNG stateis saved in .Random. seed

head (.Random.seed)

10403 - 30 - -1808316273 - -469104443 - 837650556 -
1438237906

A useful idiom:

get rseed = function(){
if('exists(".Random.seed"))
set.seed(NULL)
return(.Random. seed)

head(get rseed())

10403 - 624 - -1849901807 - 114181022 - 809053063 -
-1333479908

5. SEED RANDOM NUMBERS

We can use this state to cache the PRNG state reproducibly without explicitly
setting it

rseed = read or run("random seed", get rseed)
.Random.seed = rseed

X = runif(10)
mean(x”2)

Running func...
0.280758108258287

rseed = read or run("random seed", get rseed)
.Random.seed = rseed

X = runif(10)
mean(x”~2)

Reading from cache...
0.280758108258287

5. SEED RANDOM NUMBERS

If we want to generate a new seed we just remove the cache

system('rm random seed')

rseed = read or run("random seed", get rseed)
.Random.seed = rseed

X = runif(10)
mean (x”2)

Running func...
0.376071728383279

5. BEWARE: FUNCTIONS

Careful with functions:

mc_est function(){
set.seed(887561)
X = runif(10)
mean(x”~2)

N rep =5
var(replicate(N rep,mc _est()))

0

replicate(N rep,mc_est())

1.0.261476556288769
2.0.261476556288769
3.0.261476556288769
4.0.261476556288769

5. BEWARE: FUNCTIONS

Set the seed outside the function

set.seed(887561)

mc est = function(){
X = runif(10)
mean(x~2)

N rep =5
var(replicate(N rep,mc est()))

0.0177441652674178

5. BEWARE: PARALLELIZATION

As instructed, we set the seed outside the function call:

library(parallel)
cl <- makeCluster(5)

mc_est = function(i){
X = runif(10)
mean (x~2)

}

set.seed(887561)
out = clusterApply(cl, 1:5, mc_est)
out

1.0.437248451074948
2.0.394221360173399
3.0.177918863126196
4.0.311512514403605
5.0.246496561791708

5. BEWARE: PARALLELIZATION

Re-running it, it’s not the same.

set.seed(887561)
clusterApply(cl, 1:5, mc est)

1.0.394305944271141
2.0.454497342889293
3.0.398544956729978
4.0.582426639255505
5.0.41182331119249

Each parallel instance starts its own session, and thus resets the PRNG.

5. BEWARE: PARALLELIZATION

An ok solution:

set.seed(887561)
seeds = sample.int(100000000,5)
seeds

1.33786065
2.90525536
3.40106588
4.15296196
5.84095680

mc_est = function(i){
set.seed(seeds[i])
X = runif(10)
mean(x~2)

}

cl <- makeCluster(5)
clusterExport(cl=cl, varlist="seeds", envir=environment())

clusterApply(cl, 1:5, mc est)

5. BEWARE: PARALLELIZATION

The built-in solution:

cl <- makeCluster(5)
clusterSetRNGStream(cl, i1seed = 887561)
mc_est = function(i){

X = runif(10)

mean(x~2)

}

clusterApply(cl, 1:5, mc est)

1.0.390381338040286
2.0.353646776895175
3.0.338523872182183
4.0.261878172684988
5.0.610991600994895

5. BEWARE: PARALLELIZATION

This will fail if change parallelization parameters e.g. the number of
workers.

cl <- makeCluster(2)
clusterSetRNGStream(cl, iseed = 887561)
mc_est = function(i){

X = runif(10)

mean(x™2)

}

clusterApply(cl, 1:5, mc est)

1.0.390381338040286
2.0.353646776895175
3.0.327037352615337
4.0.30747298222943

5.0.218492073469147

5. BEWARE: PARALLELIZATION

A very reproducible way is to use the future. apply package:

mc_est = function(i){
x = runif(10)
mean(x”~2)

}

library('future.apply"')
plan(multisession,workers=5)
future lapply(1:5,FUN=mc_est,future.seed=887561)

Loading required package: future

1.0.392439730744121
2.0.288707857966789
3.0.442395305412029
4.0.568664612085185
5.0.408235991591878

This will still work even if we change parallelization parameters.

BONUS: LINTING AND STYLING

linting is checking your code’s adherence to a stylistic guidelines

depending on the language, there are packages that will do this
automatically for you

e.g.lintrinR

there are also packages that will automatically find and fix these issues for
you

e.g.stylerinR

BONUS: LINTING AND STYLING

O 00O O Ul & WN =

= =
B W N -2 O

This is ugly, let’s fix it.

jupyter:]

kernelspec:

= display name: R
= language: R

name: 1ir

"

f = function(x)
{

X = x+1
return(x+1)

BONUS: LINTING AND STYLING

We can use the styler package in R to automatically format.

library('styler"')

style file('test.R")

Styling 1 files:
test.R i

Status Count Legend

v 0 File unchanged.
i 1 File changed.
% 0 Styling threw an error.

Please review the changes carefully!

BONUS: LINTING AND STYLING

O 00 O Ul B WN BB

el el
w N RO

Now its pretty.

jupyter:

kernelspec:
display name: R
language: R
name: 1r

H B K

f <- function(x) {
X <= X + 1
return(x + 1)

BONUS: LINTING AND STYLING

Notice that st yler dealt with the yaml header nicely.

However it will not be able to directly style . ipynb files.
Solution: . ipynb + jupytext » .R

styler+ .R->pretty .R

then jupytext will automatically propagate backto . ipynb

EVERY-SO-OFTEN PRACTICES:

Every-so-often practices:

1. cleaning up your pipeline. Go back periodically, and do things like:
o delete those commented out lines
e refactor copy-and-pasted code chunks,
e rename your poorly named variables,
e break apart code into better logically structured chunks/scripts
2. testing your pipeline (from soup to nuts)
o delete all your cached intermediate results
e clearyour notebook outputs
e remove plots/data produced
e re-run your whole analysis (ideally viaamakefile)
3. code review
e have someone else look at your code
4. avoid proprietary software

DISCUSSION

e How often do you go back and clean-up code?
e What practices do you find most helpful for creating good, reproducible

code?
e What do you find gets in the way of applying good practices?

