
REPRODUCIBLE PROGRAMMING



EVERYDAY PRACTICES FOR REPRODUCIBLE
PROGRAMMING

Theory: follow a comprehensive set of coding guidelines.
Practice: time-pressure, rapid prototyping, etc. competes with code
quality and reproducibility.
In this module, we cover five idioms that can help enhance reproducibility
everyday:

1. write it in code, not the console
2. don’t repeat yourself, use functions
3. avoid magic numbers, expose them
4. cache intermediate results
5. seed random numbers



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
Code written in the console is wiped upon restart, and not particularly

reproducible.

For example, I may save model predictions in “preds.csv” but I don’t exactly
know how they were produced.



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
Shared analyses should have a instruction list.

Scripts and notebooks are ideal for this:



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
A less reproducible process:

After closing down the console, I don’t have a reproducible record of what I
did to get results.



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
A more reproducible process:

Afterwards, I have a more reproducible script that shows exactly what was
run to get results.



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
This applies to all stages of analysis, including low-level processing of data

before more traditional statistical analyses.

Example, aligning RNA-seq data:

should be wrapped-up in a script:



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
In a linux environment makefiles can be helpful for unifying and self-

documenting this process. For a wonderful tutorial see: 
.

makefiles are a way of combining multiple commands specifying the
target and the dependencies.

Karl Broman’s
minimal make

https://kbroman.org/minimal_make/
https://kbroman.org/minimal_make/


1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
Run with the command make and pass in a named argument



1. AS MUCH AS POSSIBLE, WRITE IT IN CODE.
Run with the command make and pass in a named argument



2. DON’T REPEAT YOURSELF (DRY), USE
FUNCTIONS.

Copying / pasting can create code that is difficult to maintain / understand.

For example, we often see code like this:



2. DON’T REPEAT YOURSELF, USE FUNCTIONS.
Refactoring as a function is a much more scalable solution:



2. DON’T REPEAT YOURSELF, USE FUNCTIONS.
Advantages of DRY:

1. makes your code easier to change / maintain (avoiding errors)
2. makes your code easier to understand
3. removes some clutter from code



2. DON’T REPEAT YOURSELF, USE FUNCTIONS.
Can over-do it:

First time, write it.
Second time, copy it.
Third* time, refactor it.
* May not actually be the third time.



2. DON’T REPEAT YOURSELF, USE FUNCTIONS.
“Premature optimization is the root of all evil.” – Don Knuth

In this particular case, factoring out the call to lm and knnreg increased the
number of lines of code and made it harder to read.



3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

An R example:



3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Magic numbers: sample size, kernel type, bandwidth, …



3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Better: expose those magic numbers as parameters



3. MAGIC NUMBERS SHOULD BE VARIABLES,
VARIABLES SHOULD OFTEN BE ARGUMENTS.

Naming magic numbers and other parameter choices

1. makes the code easier to read and more self-documenting
2. enhances reproducibility by

flagging these analysis choices,
exposing them via an interface for easy (third party) experimentation



4. CACHE INTERMEDIATE RESULTS
Ideally, reproducible analysis takes data from (e.g.)

raw sources, to
cleaned-up processed data, to
final results/plots/output

If this is all one long script that processes data without saving any
intermediate results along the way, it can be difficult to reproduce the

analysis.



4. CACHE INTERMEDIATE RESULTS
It is good practice to cache intermediate results to enhance reproducibility

by creating multiple entry-points into the analysis.

Don’t structure analysis like this:

Structure it like this:



4. CACHE INTERMEDIATE RESULTS
A very simplified version in R uses the idioms saveRDS(object,file)

and object = readRDS(file):



4. CACHE INTERMEDIATE RESULTS
A useful idiom if I have a single function’s results I want to cache:



4. CACHE INTERMEDIATE RESULTS
An example of this idiom:



5. SEED RANDOM NUMBERS
For statistical analyses, our results often depend on randomness. To make
randomness reproducible we need to identically set the pseudo-random

number generators (PRNG) state each time.

In R we can do this with set.seed(number) or set.seed(NULL)

Example: a simple MC estimate of the mean of a U(0,1)



5. SEED RANDOM NUMBERS
For statistical analyses, our results often depend on randomness. To make
randomness reproducible we need to identically set the pseudo-random

number generators (PRNG) state each time.

In R we can do this with set.seed(number) or set.seed(NULL)

Example: a simple MC estimate of the mean of a U(0,1)



5. SEED RANDOM NUMBERS
In R the PRNG state is saved in .Random.seed

A useful idiom:



5. SEED RANDOM NUMBERS
We can use this state to cache the PRNG state reproducibly without explicitly

setting it



5. SEED RANDOM NUMBERS
If we want to generate a new seed we just remove the cache



5. BEWARE: FUNCTIONS
Careful with functions:



5. BEWARE: FUNCTIONS
Set the seed outside the function



5. BEWARE: PARALLELIZATION
As instructed, we set the seed outside the function call:



5. BEWARE: PARALLELIZATION
Re-running it, it’s not the same.

Each parallel instance starts its own session, and thus resets the PRNG.



5. BEWARE: PARALLELIZATION
An ok solution:



5. BEWARE: PARALLELIZATION
The built-in solution:



5. BEWARE: PARALLELIZATION
This will fail if I change parallelization parameters e.g. the number of

workers.



5. BEWARE: PARALLELIZATION
A very reproducible way is to use the future.apply package:

This will still work even if we change parallelization parameters.



BONUS: LINTING AND STYLING
linting is checking your code’s adherence to a stylistic guidelines

depending on the language, there are packages that will do this
automatically for you
e.g. lintr in R
there are also packages that will automatically find and fix these issues for
you
e.g. styler in R



BONUS: LINTING AND STYLING
This is ugly, let’s fix it.



BONUS: LINTING AND STYLING
We can use the styler package in R to automatically format.



BONUS: LINTING AND STYLING
Now its pretty.



BONUS: LINTING AND STYLING
Notice that styler dealt with the yaml header nicely.

However it will not be able to directly style .ipynb files.
Solution: .ipynb + jupytext → .R
styler + .R → pretty .R
then jupytext will automatically propagate back to .ipynb



EVERY-SO-OFTEN PRACTICES:
Every-so-often practices:

1. cleaning up your pipeline. Go back periodically, and do things like:
delete those commented out lines
refactor copy-and-pasted code chunks,
rename your poorly named variables,
break apart code into better logically structured chunks/scripts

2. testing your pipeline (from soup to nuts)
delete all your cached intermediate results
clear your notebook outputs
remove plots/data produced
re-run your whole analysis (ideally via a makefile)

3. code review
have someone else look at your code

4. avoid proprietary software



DISCUSSION
How often do you go back and clean-up code?
What practices do you find most helpful for creating good, reproducible
code?
What do you find gets in the way of applying good practices?


