
VERSION CONTROL



OUTLINE
Brief overview

What it is
Why to use it

What (not) to save
Discussion



VERSION CONTROL

Maintain different versions of your project, e.g.,

Stable
Development

Maintain a history of your project

Standard: git

Note: git is separate from github

git = MS Word, github = a shared google doc



VERSION CONTROL



VERSION CONTROL IS FOR YOU
Our goals:

1. Exactly reproducible
2. User friendly
3. Transparent
4. Reusable
5. Archived
6. Version controlled

Most of these are for sharing your analysis

Version control is mainly for you



IT’S WORTH IT
Git is powerful, and so also fairly complex
But the basic functionality is pretty simple
It is well worth learning, and using regularly
Many, many tutorials online

See, e.g., Karl Broman’s: https://kbroman.org/github_tutorial/

https://kbroman.org/github_tutorial/


A SHORT TUTORIAL



GRAPHICAL INTERFACES
If you don’t like command-line interfaces, there are lots of graphics

interfaces out there, e.g. 

GitHub Desktop
GitKraken
Sourcetree



WHAT (NOT) TO SAVE



AN INHERENT TRADE-OFF
You don’t normally save every file in your git repository.

If you saved everything you did – every edit, every plot, etc. – your git
archive would balloon in size
This happens because git works off files differences (diffs)
If you don’t save enough, you may not be able to piece together what you
did

What should you keep?

Note:

A .gitignore file lets you specify what (not) to save
It is important to set this up at the outset of your project.
Once a file has been committed to your repository, it generally can’t be
removed.



GIT – DESIGNED FOR TEXT FILES
When editing text files, git only saves differences
This makes archiving simple text files very space efficient
Other files get completely re-saved at each commit
git is designed for code, not other assets (output, figures, data, …)



WHAT TO KEEP (TRACK)
markdown files
scripts
makefiles
simple text documentation
etc.



WHAT TO IGNORE
binary files

pdf, jpg, etc.
data
automatically generated text files

latex .aux, .log, etc.
notebook files that include output

.ipynb

.html

Generally, don’t track .ipynb
Use jupytext to mirror to other formats
e.g. .R or .py or quarto .qmd files are fine to track
if you really want to track .ipynb then strip output using nbstripout
beforehand



BUT DO SAVE YOUR NOTEBOOKS!

Notebooks save code and output together (.ipynb or .html)

It is highly valuable to archive notebooks (or some display version of them)

Just not with every git commit!

Develop some other strategy for saving notebooks,

e.g., a special directory where you put copies of “milestone” notebooks
e.g. some back-up scheme

Include helpful archival information within your notebook, e.g.,

date()

file.info(list.files(recursive=T))

installed.packages()



DISCUSSION
What strategy would work for you to archive “milestone notebooks”?
Examples:

Have a special directory where you put notebooks (when?)
Instead of sending plots by email, send a notebook

Realistically, what would be your biggest obstacle to actually following
that strategy?
What might you do to lessen that obstacle?


