
PROGRAMMING EXERCISES

EXERCISE 1: MAKEFILES
Create some scripts and a makefile to run them

Write two notebooks: analysis.ipynb and plotting.ipynb
Mirror the outputs to .R scripts using jupytext
analysis.ipynb should load up palmerpenguins and save it as a
.csv

plotting.ipynb should read in the .csv, make a plot, save it as a
.pdf

Create a makefile with three options: analyze, plot, and all to run
the scripts, respectively.

EXERCISE 2: REFACTORING AS FUNCTIONS
Write a script to fit a KNN regression to predict one variable from another

using palmerpenguins with some tuning parameter. Refactor the code to
take the tuning parmaeter as an agument.

For example:

You can use knnreg from the caret package
Refactor this routine as a function with a single argument K, the number of
neighbors, and return the KNN model from the function
Apply this function over the sequence K=1,5,10,15 and put the output
in a list

EXERCISE 3: MAGIC NUMBERS
Write a function to generate data from the model

where and . A�er generating the data, write a
function to fit a regression (KNN regression?). Return the model.

The arguments of this function should allow me to change: , , and any
tuning parameter of your model.
Run this simulation over the cases of and,

, along with some other combinations of your
tuning parmeters (values of maybe).
Keep the respective outputs as lists.

y = β0 + βx + e

x ∼ U(0, 1) e ∼ N(0, σ2)

β0 β

β0 = 0, β = 1, σ2 = 1
β0 = 3, β = 5, σ2 = 3

K

EXERCISE 4: CACHING
Cache and read-in analysis.

Using previous analysis, save the output to a .RDS file using saveRDS.
Start a new notebook/session, read in the cached output using readRDS
Do this over, but now use our read_or_run function in both places.

EXERCISE 5: RANDOM NUMBERS
Write a function to estimate the average value of where is uniform

over 0 to 1.

Set the seed for this simulation and check that it reproduces the same
result.
Use the future.apply function/package to run this simulation 10 times
in parallel. Check that it is reproducible.

log(X) X

EXERCISE 6: PUTTING IT ALL TOGETHER.
1. Open up the messy code
2. Refactor this code so that it is more proactively reproducible. Remember

the five idioms and try to incorporate them into your solution:
write it in code, not the console
don’t repeat yourself, use functions
avoid magic numbers, expose them
cache intermediate results
seed random numbers

3. Use an automatic linter like styler to style the code

messy.ipynb

https://wm1693.box.com/s/q7vi452q5tkhwnmr9voh9q52imyozxzs

